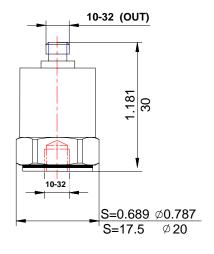


INTEGRAL ELECTRONICS (IEPE) PIEZOELECTRIC ACCELEROMETER

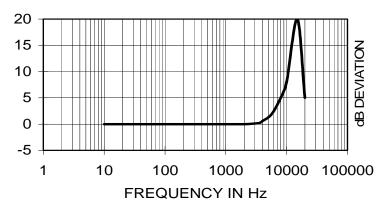
MODEL 2012A

- Measurement Range to 100 g
- Ground Isolation
- Low Impedance Output
- Top Connector
- Stud Mounted

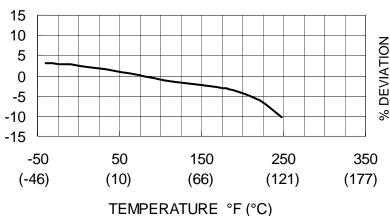

actual size

Description

The VIP Sensors Model 2012A is a stud mounted piezoelectric accelerometer designed for general vibration measurement on structures and objects. It offers a measurement range to 100~g with a sensitivity of 50~mV/g. The accelerometer transmits its low impedance voltage output through the same cable that supplies the constant current power.


The Model 2012A design is sealed against external contamination. Signal return is isolated from the outer case of the unit. The accelerometer features a 10-32 top connector that is used with coaxial cable for error-free operation.

VIP Sensors Signal Conditioner Models 5005, 5100 and 5102 are recommended for use with this low impedance accelerometer.



in (mm)

Typical Amplitude Response

Typical Temperature Response

INTEGRAL ELECTRONICS (IEPE) PIEZOELECTRIC ACCELEROMETER

MODEL 2012A

SPECIFICATIONS

The following performance specifications conform to ISA-RP-37.2 (1964) and are typical values, referenced at +75°F (+24°C) and 100 Hz, unless otherwise noted. Calibration data, traceable to National Institute of Standards and Technology (NIST), is supplied.

UNI	ГS
-----	----

`		
g	(m/s^2)	100 (980.7)
mV/g	(mV/m/s ²)	50 (5.10)
_	%	≤ 5
		See Typical Amplitude Response
	Hz	15,000
	Hz	1 – 3,500
	Hz	0.3 - 4,000
		See Typical Temperature Response
	%	< 1
	g mV/g	mV/g (mV/m/s²) % Hz Hz Hz

ELECTRICAL CHARACTERISTICS

Output Polarity		Acceleration directed from base into the transducer defined as positive
Power Source Voltage	VDC	+12 to +28
(Constant Current)		
Supply Current	mA	2 to 10
Bias Voltage	V	7 <u>+</u> 1
Full Scale Output Voltage (peak)	Vp	≤ 5
Output Impedance	Ω	< 100
Noise	mg (mm/s ²)	< 0.8 (< 7.8)
Grounding	• ,	Signal return isolated from case

ENVIRONMENTAL CHARACTERISTICS

Temperature Range		-4°F to 248°F (-20°C to +120°C)
Humidity		Epoxy sealed
Shock Limit	g pk (m/s² pk)	1,000 (9807)
Base Strain	equiv. g /µstrain	0.0002
Magnetic Field Sensitivity	equiv. g rms /gauss	2E-5 (2)
	(/T)	
Thermal Transient Sensitivity	equiv. g /°C	0.008

PHYSICAL CHARACTERISTICS

Weight	oz (grams)	0.9 (26)
Case Material		Stainless Steel
Mounting		10-32, torque 2 N-m (18 lbf-in)
Piezoelectric Material		PZT-5
Structure		Annular Shear
Output Connector		10-32 receptacle, top mounting

ACCESSORIES

Included:	Optional:
9005L10 Coaxial Cable 10-32/BNC, 10ft (3.3 m)	9006L10 Coaxial Cable 10-32/10-32, 10 ft (3.3 m)
9504-8 10-32/10-32 Mounting Stud	9505-1 M5/10-32 Isolated Mounting Stud
Calibration Sheet	

NOTES

 Short duration shock pulses, such as those generated by metal-to-metal impacts, may excite transducer resonance and cause linearity errors.